
FAME
Software Management Plan

FAME Software Management Working Group

Version 2
June 13, 2000



Contents

1.0 Introduction
1.1 Purpose
1.2 Basis
1.3 Software Management Options
1.4 Assumptions

1.4.1 Personnel
1.4.2 Other Assumptions

2.0 Design Overview
2.1 Definitions
2.2 Decouple the Executive and Computational Engine
2.3 Platform Dependent and Platform Independent Code
2.4 Input/Output Operations
2.5 Mixing Languages
2.6 Cross-Platform Development
2.7 Data Flow Diagrams

3.0 Algorithms
3.1 Documentation
3.2 Numerical Examples
3.3 Prototype Code

4.0 Computational Engine
4.1 Language

4.1.1 C++
4.1.2 Fortran
4.1.3 C

4.2 Standards
(See Appendix A)

4.3 Numerical Methods Library

5.0 The Executive
5.1 Language

5.1.1 Candidates
5.1.2 Recommendations

5.2 Standards
5.3 Plotting

6.0 Version Control
6.1 Strategy
6.2 Files Subject to Control
6.3 Candidate VCS Systems

6.3.1 Microsoft Visual SourceSafe
6.3.2 Concurrent Versions System



Contents (continued)

7.0 Quality Assurance
7.1 Code Reviews
7.2 Unit Testing
7.3 Subsystem Testing
7.4 Regression Testing
7.5 Incident Tracking

7.5.1 Candidate Incident Tracking Products
7.5.1.1 TestTrack
7.5.1.2 GNATS

8.0 Contributors

9.0 References

Appendix A: C Coding Standards
A.1  General Function Design Guidelines
A.2  Specific Rules and Guidelines
A.3  Style
A.4 Error Handling Guidelines
A.5 In-line Documentation Rules

Appendix B: C Function Template

Appendix C: C Header File Template

Appendix D: Sample Code



1.0 Introduction

1.1 Purpose
The purpose of this document is to present a plan for managing the development of

the FAME data analysis software.  The plan addresses such issues as development
methodology, standards, style, configuration control, and quality assurance.  Essentially
all of the ideas presented in this plan have been used in practice, and have been found to
lead to software that is robust, maintainable, well documented, and portable to very high
level.

1.2 Basis
 The plan presented here is based on software development plans used successfully in

two moderate-size software projects undertaken at USNO: MICA, the Multi-year
Interactive Computer Almanac (Bangert and Kaplan 1992), and STELLA, the System to
Estimate Latitude and Longitude Astronomically (Bangert 1996).  The plan also draws on
experiences gained on other astronomical software projects, especially the Sloan Digital
Sky Survey (e.g. SDSS Collaboration 1996).

1.3 Software Management Options
The project to build the FAME data analysis software will almost certainly fall short

of expectations, and quite possibly fail outright, without some level of management.  One
option is to implement formal software configuration management.  However, the
resources necessary to do this probably do not exist.  Also, it is not desirable to create a
management scheme that is so rigid that it limits creativity and flexibility.  The software
management plan presented here stresses a solid design, and practical rules and
guidelines that are enforced by peer review.

1.4 Assumptions

1.4.1 Personnel
The most important recommendation regarding FAME software management — so

important that it will be considered an assumption — is that the data analysis effort have
a Software Project Manager and several dedicated pipeline programmers.  These
personnel will be fully dedicated to the development and maintenance of the operational
pipeline software.  The roles of these individuals, and other staff that will play critical
roles in the software development effort, are defined below:

• Algorithm developers: Any member of the FAME team that contributes data
reduction, file management, or other algorithms to the project.

• Software Project Manager: The individual responsible for ensuring that the
operational pipeline software is of high quality, conforms to established standards, and is
delivered on schedule and within budget.  The software project manager also supervises
the pipeline programmers.

• Pipeline programmers: FAME team members dedicated to development and
maintenance of the operational data analysis software.  Each pipeline programmer also
serves as a code reviewer for code written by other pipeline programmers (see Section
7.1).

http://aa.usno.navy.mil/fame/


1.4.2 Other Assumptions
The scope of the software development task is described in Section 2.2.3 of the

FAME Concept Study Report (Johnston 1999).  The effort will likely be a complex,
moderate-to-large size project that could take several years to complete.  The software
will have to be maintained through the lifetime of the space mission.  Given the duration
and nature of the task, there are several other assumptions that have been made in
formulating the software development plan:

• Pipeline programmers may also be algorithm developers.

• The pipeline programmers will likely be scientists rather than trained software
engineers.

• The pipeline programmers bring different skill levels and programming styles to
the project.

• The pipeline programmers may change during the life of the project.

• Advances in computer hardware and operating systems may require that the
software operate in an environment different from the one originally planned.

• Discovery of new, improved algorithms or techniques may require changes to the
software (and perhaps to the design) in later stages of the software development.

2.0 Design Overview
This section presents some general concepts that will be useful in designing the

FAME data analysis software system.  The most basic design feature proposed here
involves dividing the software system into two parts: the Executive and the
Computational Engine.

2.1 Definitions
The Executive is the part of the software system that manages the data flow through

the system at the highest level.  The Executive also handles interactions with the user.
Thus, the User Interface (UI), which queries the user for input and presents the user with
output, is part of the Executive.  The Computational Engine (CE) is the part of the system
that performs the tasks requested by user input or by another part of the system.

2.2 Decouple the Executive and Computational Engine
Decoupling the computational part of the software system from the executive part is

arguably the most important design goal for the software system.  A generic example of
this type of design is shown in Figure 1.  It is relatively easy, in practice, to decouple the
Executive and the CE.  The highest-level modules in the CE serve as the interface
between the Executive and the CE.  These “task modules” take from the Executive the
input necessary to perform a specific task, call lower-level modules within the CE that
perform the task, then return the required output to the Executive.  The output can be in
the form of data arrays to be plotted, or even formatted tables to be displayed.  It is the
function of the Executive to display the results, or to pass the results to the next stop in
the pipeline.



Computational 
Engine

Executive
User Interface (Input & Output)

Pipeline Control

Task 1 Task 2 Task n

Libraries

System Constants
Static Data

Figure 1: Schematic showing a software system design in which the Executive is decoupled from
the Computational Engine (CE).  The Executive controls the data flow though the system (pipeline)
and is responsible for all interactions with the user (e.g obtaining input and displaying results).  It
may contain code that is platform-dependent.  The CE performs the tasks requested by the user or
other parts of the software system.  In the case of FAME, all scientific data reduction functions
(tasks) would reside in the CE.  The CE is platform-independent, written in an ANSI-standard
language of choice.  The libraries contain logical blocks of code usually shared by several task
modules.  System constants are defined once, in a separate module, and available to all functions in
the CE.  Static data required by the system is handled the same way.

2.3 Platform Dependent and Platform Independent Code
The main reason for decoupling the executive code and the computational code is to

isolate platform-dependent code—code that uses specific services available from the
operating system or hardware.  Platform-dependent code resides in the Executive, while
the CE is platform-independent. The CE is made platform-independent by strict
adherence to the ANSI standard for the programming language of choice.  However, it
may be necessary to use platform-dependent software, such as a GUI toolkit or an off-
the-shelf graphics library, to create the data analysis system.  This software is permitted
within the Executive.  The standards used in the Executive may be entirely different than
those used in the CE.  This general design creates a highly flexible, robust software
system.  If it becomes necessary to change platforms, the CE will port without



modification.  All that need be done is develop a new Executive, or modify the existing
one, for the new platform.

2.4 Input/Output Operations
Most input/output (I/O) operations occur in the Executive, but there may be instances

when proper design calls for an I/O operation in the CE.  In these situations, only ANSI
standard I/O is permitted.  The operation should be isolated in a separate module within
the CE and carefully documented.

2.5 Mixing Languages
Another advantage of decoupling the Executive and CE is that each can be written in

the language best suited for the task to be performed.  For example, GUIs are often
written in C++ because numerous object-oriented toolkits for creating GUIs are readily
available.  In this example, it would make sense to write the Executive in C++.  The CE,
on the other hand, may best be written in one of the procedural languages used by
scientists, such as C or Fortran.  The binding of the two languages occurs in the
Executive, at the boundary between the CE and the Executive.  Languages should not be
mixed within the CE itself.

2.6 Cross-Platform Development
A major advantage of making the CE platform-independent is that it can be

developed on virtually any platform.  Assume, for example, that Sun workstations
running a specified version of the Solaris operating system have been selected for
mission data analysis operations.   Certainly, the CE software must be thoroughly tested,
and execute correctly, on this platform, but the software does not necessarily have to be
developed on this platform.  The CE software could be developed, for example, on
inexpensive PCs, or any other platform that supports an ANSI compiler for the
programming language of choice.  Experience has shown that there are major advantages
to this approach, as different compilers are sensitive to different coding errors or
“dangerous” code constructions.  Compiling and testing across different platforms helps
to ensure a robust, portable CE.

2.7 Data Flow Diagrams
Data flow diagrams have already been used to model the FAME data analysis system

(e.g. Johnston 1999; Reasenberg 1999).  These diagrams identify processes that must take
place, as well as the input and output (in a general form) to each process.  The processes
are identical to the tasks or subtasks that must be performed by the software.  Thus, some
form of data flow diagram is helpful in designing the software.  Their use is encouraged.

3.0 Algorithms

Algorithms are procedures used to solve mathematical problems, or in this case, to
perform the various tasks and sub-tasks required for FAME data analysis.  Algorithms
will be used by the pipeline programmers as the basis for the data analysis software.
Thus, the algorithms represent a critical resource that must be managed.



3.1 Documentation
All algorithms accepted for use in the FAME data analysis software should be

documented in both printed and electronic form.  A FAME Technical Note series should
be initiated and maintained to serve as a repository for the algorithms contributed to the
project.  The technical notes should be numbered in some logical form for easy reference.
An index to the technical notes should exist in both printed and electronic form.  The
electronic form of the technical notes and index should be accessible to the FAME team
via the FAME Web Site.  Use of Portable Document Format (PDF) for the electronic
version of the technical notes is recommended.

3.2 Numerical Examples
Every algorithm accepted for use in the FAME software should be accompanied by at

least one numerical example including verified (“truth”) results.  The ability of the
pipeline programmers to reproduce the example is the first step in unit-testing the
software.  Successful duplication of the numerical example gives the programmer an
indication that the algorithm has been correctly implemented.

3.3 Prototype Code
Algorithm developers must test their algorithms before formally submitting them for

use in the data analysis software.  This will undoubtedly require programming the
algorithm.  Such code written during the development of an algorithm may not fully
conform to FAME standards, and may not even be written in the official project
language.  This code—prototype code—is still valuable and should be managed (i.e.
archived and subject to version control).  The prototype code can be used by the pipeline
programmer as the basis for the operational code to be used in the data analysis software.
Furthermore, results from the actual code can be compared to results from the prototype
code as a first check that the algorithm has been correctly implemented.  Prototype code
should be submitted with any associated test programs, and at least one test case
including truth results.

4.0 Computational Engine
The CE is the part of the software system that performs the tasks requested by user

input or by another part of the system.  It is within the CE that all scientific data analysis
computations should take place.  The CE should be platform-independent: it should
compile without errors, then execute identically to the required precision, on different
platforms, without requiring modification.  Platform independence is achieved by strict
adherence to standards.

4.1 Language
The language selected for the computational engine must have an ANSI-standard set

of features.  It is also desirable to choose a language that is widely used in the scientific
community.  This narrows the selection to three languages: Fortran, C, and C++.



4.1.1 C++
C++ is a language specifically designed for object-oriented programming (OOP).

Effective use of OOP requires knowledge of and considerable experience using object-
oriented design (OOD).  The advantages of OOD and OOP are well established.
However, it will likely be difficult to assemble a team of scientific programmers with
considerable experience in OOD, and this considerable experience is essential for
minimizing the risk of a bad design and equally bad software.  Thus, it is recommended
that the language choices be limited to the procedural languages.

4.1.2 Fortran
The biggest advantages of Fortran are its good support for mathematics, its

readability, and a well-established base of existing software libraries.  On the negative
side, Fortran—specifically the widely-used Fortran 77 and its predecessors—almost
encourages poor programming practices due to the lack of some important control
structures (such as the while loop), allowing multiple entry points and implicit typing,
and many language extensions.

4.1.3 C
It is recommend that the CE be written in structured, ANSI C.  Ritchie (1993)

summarizes several key advantages of C.  He notes that “… C has remained freer of
proprietary extensions than other languages.”  C is also an extremely flexible language
that is useful for a wide range of applications.  As Ritchie states, “C is… efficient enough
to replace assembly language, yet sufficiently abstract and fluent to describe algorithms
and interactions in a wide variety of environments.”  One disadvantage is that C
programs tend to be obscure and difficult to read.  This problem can be solved by
effective use of coding standards.

Conforming to the ANSI C standard ensures that the CE will be highly portable
regardless of platform.  Setting appropriate compiler options for “ANSI strict” enforces
compliance with the ANSI standard.  The standard source for documenting ANSI C is
Kernighan and Ritchie (1988).  A good source of practical information on writing well-
engineered ANSI C programs is Darnell and Margolis (1988).

4.2 Standards
The CE should be developed according to an established set of standards and

guidelines.  These standards ensure that the code is readable and has a consistent style,
regardless of the programmer.  The standards also ensure that the code is robust,
maintainable, and meets minimum documentation requirements.  The standards presented
here are based on those used in the USNO projects cited in section 1.0, with additional
contributions from the UK Starlink project (Charles and Murray 1994).

4.2.1 General Design Guidelines for Functions
See Section A.1 of Appendix A.

4.2.2  Specific Coding Rules and Guidelines
See Section A.2 of Appendix A.



4.2.3 Style Standards
See Section A.3 of Appendix A.

4.2.4 Error Handling Guidelines
See Section A.4 of Appendix A.

4.2.5 In-line Documentation Rules
See Section A.5 of Appendix A.

4.2.6 C Function Template
A proposed standard template for C functions is provided in Appendix B.

4.2.7 C Header File Template
A proposed standard template for C header (“.h”) files is provided in Appendix C.

4.2.8 Sample Code
Sample code illustrating the standards and guidelines cited in sections 4.2.1 through

4.2.5 is given in Appendix D.

4.3 Numerical Methods Library
It is recommended that a standard numerical methods library be adopted for use in the

FAME data analysis software.  This will provide a single source for commonly-used
numerical functions, thus facilitating software maintenance.  The library should be
written in ANSI C, portable to all platforms involved in the data analysis.  The actual
library to be used is TBD.

5.0 The Executive
The Executive is the part of the software system that manages the data flow through

the pipeline.  It also solicits and accepts input from the user, and provides output to the
user in forms such as tables and graphs.  Thus, the user interface resides within the
Executive.  Any platform-dependent code required by the software system also resides in
the Executive.

Given the high data rate and data volume associated with FAME, the data flow will
be a very important issue.  For example, in developing astrometric block-adjustment
software, about 80% of the development time was spent in the data flow and file
organization, and about 20% in the “math” coding (Zacharias 2000).

5.1 Language
There are obvious advantages to using the same language for the Executive as was

used for the CE.  However, this is not necessary.  The goal is to use the language best
suited for the actual tasks that the Executive must perform.  The binding between the CE
and the Executive should reside in the Executive at the boundary between the parts.

5.1.1 Candidates
• C: cross-platform; same language as the CE; ANSI standard.



• C++: cross-platform; standard.  An advantage of using C++ as an executive
language is that many GUI toolkits are available.  Given the experience needed to
effectively code in C++ (see Section 4.1.1), and the fact that there are no plans for a
GUI in this project, C++ is probably not a good choice.

• Perl: see http://www.p erl.com/pub/; cross-platform; free.  It is very different
programming in Perl than in more familiar languages like C or Fortran, which is a
strike against it (requiring additional learning curves should be well motivated).

• IDL: see http://www.rsinc.com/idl/index.cfm; somewhat cross-platform; expensive.
IDL’s strength is in its plotting abilities.  However, there would be a large overhead
associated with using IDL as the Executive language.  It may not be ideal, or even
able to manage the data flow.

• TCL/TK: see http://dev.scriptics.com/software/; cross-platform; free.  TCL/TK was
used successfully by SDSS.  It does require additional programming (a C wrapper
around every C function that must be available from the TCL command line),
though its easy enough to copy templates for that.  Its power is that it allows one to
return data structures from C calls, and then pass them around at the command line
level.  The contents of the data structures can be plotted, examined, and passed to
other TCL-wrapped C functions.  TCL/TK has many desirable features for use as
the Executive language.

5.1.2 Recommendation
The actual language to be used in the Executive is TBD.  If a simple Executive is

desired, C is probably the best choice.  However, if a more powerful Executive is desired,
one which pastes together computational functions with I/O, plotting, etc. in a command
link interface, then TCL/TK is a good choice.  The second choice will involve more
effort.

5.2 Standards
 It is difficult to adopt a specific set of standards for the Executive, given that the

language is TBD and platform-dependent code is permitted.  Furthermore, it may be
necessary to use a third-party software package (e.g. a graphics package) within the
Executive.  This third-party software will naturally adhere to the standards set by its
developers.  Despite these difficulties, a few common sense guidelines can be stated:

• If the same language is used for both the Executive and the CE, then the
standards adopted for the CE should be used in the Executive to the maximum
extent possible.

• If the language chosen for the Executive has an ANSI standard, then the ANSI
standard should be followed to the maximum extent possible.

• Platform dependencies and bindings to third-party software should be isolated
in separate modules and especially well documented.

• The concepts behind many of the standards given in Appendix A can be applied
to any programming language.



5.3 Plotting
The Executive should provide two plot capabilities.  The first capability is to be able

to plot data directly from the Executive, via calls to a standard plot library (TBD).  The
Executive should also provide a means to dump selected data to disk in various formats
(FITS tables, ASCII files, etc.), allowing users the option of using their favorite
standalone plotting packages.

6.0 Version Control

In a software development task of this size, an automated version control system
(VCS) is essential.  Simply put, a VCS records the history of critical project files.  It
allows a software developer to retrieve a past version of a document or source file.  It also
allows several developers to work on the same file simultaneously, merging the changes
when the developers are done.

6.1 Strategy
Source code can be divided into products, where a product is a group of source code

that is compiled together and has a single controlling “make” or project file.  For
example, each pipeline (centroid, sphere reconstruction, spiral reduction, photometry, etc)
would be treated as a separate product.  Each product generally is a different module for
version control purposes.  Each product is assigned a unique prefix, such as “ce” for
centroiding or “ph” for photometry.  All global functions and variables in a product must
be preceded by its unique prefix.  This avoids name collisions between products (this also
applies to enumerated values).

6.2 Files Subject to Control
The following items should be subject to version control:

• operational source code
• calibration and parameter data files
• “make” or project files
• test programs
• test input data, “truth” results (if available), and actual test results
• prototype code (see section 3.3)
• code and algorithm documentation

6.3 Candidate VCS Products
The following products have been used in other USNO projects.

6.3.1 Microsoft Visual SourceSafe [http://msdn.microsoft.com/ssafe/prodinfo/
default.asp]

Microsoft Visual SourceSafe (VSS) is being used successfully for the development of
the next major version of STELLA (see section 1.0).  Its primary advantage is integration
with Microsoft development tools.  The VSS server must run on a Windows 95 or later
PC, although a Unix port is available from Mainsoft [http://www.mainsoft.com/products/
visual/over.html].  A MacOS client is available from Metrowerks [http://www.



metrowerks.com/desktop/MWVSS/].  The VSS server can be accessed over the Internet
using another third-party product (SourceOffSite; http://www.sourcegear.com/SOS/).
VSS is quite expensive: each Windows client has a street price in the $300-$400 range.
The server is included with the client, so it is essentially “free.”

6.3.2 Concurrent Versions System [http://www.gnu.org/software/cvs/cvs.html]
Concurrent Versions System (CVS) is part of the GNU project, and thus is free

software.  CVS servers and clients run on most Unix variants [see http://www.
sourcegear.com/CVS/Dev/code].  Clients for Windows [http://www.wincvs.org/] and
MacOS [http://www.maccvs.org/] are also available.  CVS supports access to its
directories from remote hosts using standard Internet protocols. CVS has been used
successfully in many projects, including the Sloan Digital Sky Survey, and is familiar to
several USNO staff members.  Due to its familiarity and low cost, CVS appears to be the
better choice for development of the FAME data analysis software.

7.0 Quality Assurance

7.1 Code Reviews
Peer review of code proved to be a very effective way to enforce compliance with

standards, to check the readability of the code, and to identify risky code constructions.
Each function or subroutine should be read by another pipeline programmer, critiqued,
then passed back to the original programmer for action.  The software project manager
arbitrates conflicts regarding suggested changes to the code.

7.2 Unit Testing
Each function or subroutine should be thoroughly tested as an individual unit using

the tests provided by the algorithm developer.  The programmer should also perform
additional tests as appropriate.  Emphasis should be placed on testing code response to
special cases.  Experience has shown that end-to-end testing of the system proceeds much
more smoothly when the individual components have been thoroughly debugged first.  It
is usually much easier to debug a small block of code that performs a specific task, rather
than postponing testing until a large block of code is done.

7.3 Subsystem Testing
Once the individual functions have been tested, the subsystems should be individually

tested.  For example, in Figure 1, the various “task” modules within the CE are the
subsystems.  There may be lower levels of subsystems (logical subsets of code within the
task modules) depending upon the complexity of the code.  Just as in unit testing, it is
easier to test smaller blocks of code before testing the full system.

7.4 Regression Testing
The unit and subsystem tests should be executed by a top-level build on each software

product.  An error should be returned if any of the tests fail.  All files necessary to
conduct the tests must be included as part of the software product (that is, they are



included in the code repository module for that product).  Whenever a software product is
modified, a top-level make should be executed to verify that the product both compiles
and passes all of its regression tests before the modifications are checked in to the code
repository.

7.5 Incident Tracking
Incident tracking software manages bug reports, suggestions (or requests) for change,

and other “incidents” related to the operational software.  Such software is very useful for
the project manager, the programmers, and the software testers, as it provides a way to
track the status and history of each issue.  Use of incident tracking software in the FAME
project is highly recommended.  Two candidate systems are described below.

7.5.1 Candidate Incident Tracking Products
The following products have been used in other USNO projects.

7.5.1.1 TestTrack [http://www.seapine.com/]
This product was used successfully in the STELLA project.  It is available in several

versions providing a choice of platform-native or Web-based clients.  Pricing starts at
about $200-300, depending upon the version.

7.5.1.2 GNATS [http://www.gnu.org/software/gnats/gnats.html]
This product was used successfully in the SDSS project.  GNATS is part of the GNU

project, and thus is free software.  A Web front-end for GNATS and a list of other
GNATS resources are available via the links at http://alumni.caltech.edu/~dank/
gnats.html.  Due to its familiarity and low cost, GNATS appears to be the better choice
for use in FAME software development.

8.0 Contributors
The FAME Software Management Working Group consisted of John Bangert

(Chair), Greg Hennessy, Scott Horner, Jeff Munn, Marc Murison, and Bob Reasenberg.
Ralph Gaume, as MO&DA Lead, served as an ex officio member of the group.

Nancy Oliversen and Norbert Zacharias also contributed useful comments on the first
draft of the plan.



9.0 References

Bangert, J. and Kaplan, G. (1992). BAAS 24, 740.

Bangert, J. (1996). Chips, Vol. XIV, Issue 2, p. 5 (April 1996).

Charles, A. and Murray, J. (1994). “Starlink C Programming Standard.”  (Rutherford
Appleton Laboratory: Starlink General Paper 4.2).

Johnston, K. (1999). FAME Concept Study Report (NASA Midex AO-98-OSS-03).

Darnell, P. and Margolis, P. (1988).  C: A Software Engineering Approach. (Springer-
Verlag).

Kernighan, B. and Ritchie, D. (1988). The C Programming Language. (Prentice Hall).

Reasenberg, R. (1999). “An Approach to FAME Data Processing.” (internal FAME
project document presented at USNO, July 1999).

Ritchie, D. (1993). “The Development of the C Language,” paper presented at the Second
History of Programming Langauges conference; Cambridge, MA; April 1993.

Schildt, H. (1997). C/C++ Programmer’s Reference. (Osborne).

SDSS Collaboration. 1996, SDSS Black Book (Princeton: Dept. Astron., Princeton
Univ.).  See also http://www.astro.princeton.edu/PBOOK/welcome.htm.

Zacharias, N. (2000); private communication.



Appendix A:  C Coding Standards

A.1  General Function Design Guidelines

• each C function should perform a single, specific task

• strive for readable, understandable code over elegant-but-incomprehensible
code

• avoid the more obscure parts of the C language

• each function should be designed as generally as possible; code should handle
all relevant “special cases”

• each function should be designed using a simple, top-down flow (no back
transfers except for loops)

• unused variables or unreachable code are not permitted in operational software

A.2  Specific Rules and Guidelines

Header File

• each file of C source must be accompanied by an associated standard header
file of the same name except with a .h extension.

• the format of this header file is given in  Appendix C.

• the header file must contain, as applicable:
• list of external variables used in the associated source file (extern)
• #include statements

• external header files
• standard libraries

• data structures
• function prototypes

Data structures

• data structures (derived data types) are to be defined in header files using the
typedef keyword.  For example, the structure body is defined by:

typedef struct
   {
      short int type;
      short int number;
      char name[100];
   } body;



Use of macros

• it is recommended that use of macros be avoided

C keywords

• do not redefine names of C keywords

Use of global variables

• minimize use of global variables, but…

• define physical, mathematical, and system constants once in a separate
function; pass to all modules that require them via global variables

Input/output (I/O)

• isolate all I/O; place all I/O operations in separate functions; do not mix I/O
operations with computations

Function and variable typing

• functions must be explicitly typed, including void

• void must be explicitly stated in an empty argument list

• implicit type conversions (type promotions) are not permitted; use explicit type
casting

• char variables are not to be used as int variables

• variables of type int must be declared as long or short

Operations in argument lists

• avoid operations in argument lists

Use of goto

• goto statements are prohibited

Numerical values in an if expression

• use of numeric values in an if expression is permissible, but should be
commented



Incrementing/decrementing variables

• avoid incrementing/decrementing variables via operators in an assignment
statement (e.g. j = i++;)

• avoid incrementing or decrementing pointer variables

switch statement

• the last case in a switch statement should end with a break statement
even though it is not required

Loops

• avoid changing the current loop index and range within a for loop

• use only non-floating loop variables for the index and range

Use of sizeof

• for clarity and portability, use the sizeof function explicity wherever
appropriate

Preprocessor commands

• limit use of preprocessor commands; confine to header files (except for
conditionals and #include)

A.3  Style

General

• each line of source code is limited to 80 characters, but continuations are
permitted

• no tab characters are permitted in source code files; use spaces instead

• only one C statement per line of code is permitted

Use of case

• all local variables are to be lowercase

• all global variables are to be UPPERCASE



Use of Spaces

• function argument list: use space after each comma; a blank line must appear
between input and output arguments

• use a space after the name of each called function; no space should appear
between an array name and the opening square bracket

• use a space after a C keyword

• use a space after each semicolon in a for statement

• a single white space is to be used on each side of an equal sign and on each
side of an operator, including relational operators

• do not include whitespace inside compound operators such as +=, -=, etc.

Curly Braces & Indenting

• all curly braces must appear on their own lines

• code following an opening curly brace must be indented three spaces; code
reverts to original column after a closing curly brace

• opening and closing curly braces (corresponding curly braces) must appear in
the same column

• curly braces used in an if statement should appear under the i in if; the
else should be indented one space

Argument lists

• all input variables should be given first, followed by a blank line, followed by
output variables

• avoid variables that are input, changed withinh the function, then output.

A.4  Error Handling Guidelines

• all input values should undergo “sanity checks” at the highest level of the
structure

• the program should provide basic error checks on all relevant and important
internal calculations



• code should always provide a “graceful exit,” not a crash, when an anomaly or
error is encountered

• when a function determines and sets an error or status flag, the return value
from the function should be the flag

A.5  In-line Documentation Rules

• each file of C source code is to be preceded with a comment block as follows:
/*
   source file name: description

   Version: x.x
*/

• comment delimiters (/* and */) are to appear on their own lines, in the
leftmost columns (except in a “function delimiter”; see below)

• the amount of documentation (comments) within a function is adequate if the
comments are able to “stand alone” in explaining how the function works

• text of comments is to appear in the lines between the comment delimiters, and
must be indented so as to be aligned with the code

• no comments are to appear on the same line as code

• make liberal use of blank lines to make code more readable

• each routine must be preceded by a “function delimiter”: a comment line in
which the /* is typed in columns 1 and 2, columns 3-9 are padded with
asterisks, and the function name is typed beginning in column 10, followed by
a space and a */

• each function must include a standard prolog which provides the following
information: purpose, references, input/output arguments (including types and
dimensions), return value, global variables used, functions called,
version/date/programmer, and notes; see Appendix B



Appendix B:  C Function Template

/********function_name */

(function name and argument list)
/*
------------------------------------------------------------------------

   PURPOSE:
      x

   REFERENCES:
      x

   INPUT
   ARGUMENTS:
      x

   OUTPUT
   ARGUMENTS:
      x

   RETURNED
   VALUE:
      x

   GLOBALS
   USED:
      x

   FUNCTIONS
   CALLED:
      x

   VER./DATE/
   PROGRAMMER:
      V1.0/mm-yy/initials (organization)

   NOTES:
      x

------------------------------------------------------------------------
*/
{
   short int ;

   long int ;

   float ;

   double ;

   (derived types)

   (code)

   return;
}



Note:

• Input/output arguments:
• first line: indent three spaces, must contain variable name and data type;
• following lines: indent three spaces, describe the variable;

Example:

   INPUT
   ARGUMENTS:
      var_name[10] (short int; array)
         This variable is used as an example in this sample prolog.
      dummy (double)
         This is another example.



Appendix C:  C Header File Template

/*
   Header file for source-file name
   Version x.x
/*

#ifndef MACRO-NAME__
   #define MACRO-NAME__

/*
   External variables
*/
   extern ...;

/*
   Standard Libraries
*/

   #include <standard library.h>
.
     .
     .
/*
   External files
/*

   #include "external file.h"
     .
     .
     .

/*
   Function prototypes
*/
     .
     .
     .

#endif

• MACRO-NAME is the name of the associated C source file, in upper case
• version number must match the version number of the associated C source file
• the ‘extern’ type modifier is used to specify all variables defined outside of the

associated C source file
• standard libraries include math.h, stdio.h, etc.
• the header files for files containing functions used within MACRO-NAME.c are

to be included under “External files”
• function prototypes should be in the form used in the associated C source file
• At the top of the associated file of C source, but after the comment block, the

following should appear:
   #ifndef _MACRO-NAME_
      #include "macro-name.h"
   #endif



Appendix D:  Sample Code

/********precession */

void precession (double tjd1, double *pos, double tjd2,

                 double *pos2)
/*
------------------------------------------------------------------------

   PURPOSE:
      Precesses equatorial rectangular coordinates from one epoch to
      another.  The coordinates are referred to the mean equator and
      equinox of the two respective epochs.

   REFERENCES:
      Explanatory Supplement to AE and AENA (1961); pp. 30-34.
      Lieske, J., et al. (1977). Astron. & Astrophys. 58, 1-16.
      Lieske, J. (1979). Astron. & Astrophys. 73, 282-284.
      Kaplan, G. H. et. al. (1989). Astron. Journ. Vol. 97,
         pp. 1197-1210.
      Kaplan, G. H. "NOVAS: Naval Observatory Vector Astrometry
         Subroutines"; USNO internal document dated 20 Oct 1988;
         revised 15 Mar 1990.

   INPUT
   ARGUMENTS:
      tjd1 (double)
         TDB Julian date of first epoch.
      pos[3] (double)
         Position vector, geocentric equatorial rectangular coordinates,
         referred to mean equator and equinox of first epoch.
      tjd2 (double)
         TDB Julian date of second epoch.

   OUTPUT
   ARGUMENTS:
      pos2[3] (double)
         Position vector, geocentric equatorial rectangular coordinates,
         referred to mean equator and equinox of second epoch.

   RETURNED
   VALUE:
      None.

   GLOBALS
   USED:
      T0, RAD2SEC

   FUNCTIONS
   CALLED:
      None.

   VER./DATE/
   PROGRAMMER:
      V1.0/01-93/TKB (USNO/NRL Optical Interfer.) Translate Fortran.
      V1.1/08-93/WTH (USNO/AA) Update to C Standards.
      V1.2/03-98/JAB (USNO/AA) Change function type from 'short int' to
                               'void'.
      V1.3/12-99/JAB (USNO/AA) Precompute trig terms for greater
                               efficiency.

   NOTES:
      1. This function is the "C" version of Fortran NOVAS routine



      'preces'.

------------------------------------------------------------------------
*/
{
   double xx, yx, zx, xy, yy, zy, xz, yz, zz, t, t1, t02, t2, t3,
      zeta0, zee, theta, cz0, sz0, ct, st, cz, sz;

/*
   Compute time arguments.  't' and 't1' correspond to Lieske's "big T"
   and "little t".
*/

   t = (tjd1 - T0) / 36525.0;
   t1 = (tjd2 - tjd1) / 36525.0;
   t02 = t * t;
   t2 = t1 * t1;
   t3 = t2 * t1;

/*
   Compute precessional angles in arcseconds.  'zeta0', 'zee', 'theta'
   below correspond to Lieske's "zeta-sub-a", "z-sub-a", and
   "theta-sub-a".
*/

   zeta0 = (2306.2181 + 1.39656 * t - 0.000139 * t02) * t1
         + (0.30188 - 0.000344 * t) * t2 + 0.017998 * t3;

   zee = (2306.2181 + 1.39656 * t - 0.000139 * t02) * t1
       + (1.09468 + 0.000066 * t) * t2 + 0.018203 * t3;

   theta = (2004.3109 - 0.85330 * t - 0.000217 * t02) * t1
         + (-0.42665 - 0.000217 * t) * t2 - 0.041833 * t3;

/*
   Convert the angles to radians.
*/

   zeta0 /= RAD2SEC;
   zee /= RAD2SEC;
   theta /= RAD2SEC;

/*
   Precalculate trig terms.
*/

   cz0 = cos (zeta0);
   sz0 = sin (zeta0);
   ct = cos (theta);
   st = sin (theta);
   cz = cos (zee);
   sz = sin (zee);

/*
   Compute the elements of the precession rotation matrix.
*/

   xx =  cz0 * ct * cz - sz0 * sz;
   yx = -sz0 * ct * cz - cz0 * sz;
   zx = -st * cz;
   xy = cz0 * ct * sz + sz0 * cz;
   yy = -sz0 * ct * sz + cz0 * cz;
   zy = -st * sz;
   xz = cz0 * st;
   yz = -sz0 * st;



   zz = ct;

/*
   Perform rotation.
*/

   pos2[0] = xx * pos[0] + yx * pos[1] + zx * pos[2];
   pos2[1] = xy * pos[0] + yy * pos[1] + zy * pos[2];
   pos2[2] = xz * pos[0] + yz * pos[1] + zz * pos[2];

   return;
}

/********set_body */

short int set_body (short int type, short int number, char *name,

                    body *cel_obj)
/*
------------------------------------------------------------------------

   PURPOSE:
      Sets up a structure of type 'body' - defining a celestial object-
      based on the input parameters.

   REFERENCES:
      None.

   INPUT
   ARGUMENTS:
      type (short int)
         Type of body
            = 0 ... major planet, Sun, or Moon
            = 1 ... minor planet
      number (short int)
         Body number
            For 'type' = 0: Mercury = 1,...,Pluto = 9, Sun = 10,
                            Moon = 11
            For 'type' = 1: minor planet number
      *name (char)
         Name of the body.

   OUTPUT
   ARGUMENTS:
      struct body *cel_obj
         Structure containg the body definition (defined in novas.h)

   RETURNED
   VALUE:
      (short int)
         = 0 ... everything OK
         = 1 ... invalid value of 'type'
         = 2 ... 'number' out of range

   GLOBALS
   USED:
      None.

   FUNCTIONS
   CALLED:
      None.

   VER./DATE/
   PROGRAMMER:
      V1.0/06-97/JAB (USNO/AA)



      V1.1/10-98/JAB (USNO/AA): Change body name to mixed case.

   NOTES:
      None.

------------------------------------------------------------------------
*/

{
   char temp;

   short int error = 0;
   short int i;

/*
   Initialize the structure of type ‘body’.
*/

   cel_obj->type = 0;
   cel_obj->number = 0;
   strcpy (cel_obj->name, "  ");

/*
   Set the body type.
*/

   if ((type < 0) || (type > 1))
      return (error = 1);
    else
      cel_obj->type = type;

/*
   Set the body number.
*/

   if (type == 0)
      if ((number <= 0) || (number > 11))
         return (error = 2);
    else
      if (number <= 0)
         return (error = 2);

   cel_obj->number = number;

/*
   Set the body name in mixed case.
*/

    i = 0;
    while (name[i] != 0)
    {
       if (i == 0)
          temp = toupper (name[i]);
        else
          temp = tolower (name[i]);
       cel_obj->name[i++] = temp;
    }
    cel_obj->name[i] = '\0';

    return (error);
}


